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AbslraeL We present a model relating the migration enthalpy H," for nearest-neighbour 
vacancy jumps in cubic metals Io  the phonon dispenion. The migration enthalpy is split 
into hvo paru, one depending only on the lattice s~ructure, the other on the vibrational 
properties of the panicular metal. This latter term can be written in terms of the static 
lattice Green function, i.e. of the U-' moment of the spectrum. It can thus be calculated 
directly from measured phonon dispenion cuwes. For FCC metals, excellent agreement 
between calculated and measured values of H," is found. For BCC metals, where H," is 
known from experiments only in a few c a y s ,  predictions are made wherever the phonon 
dispersions are available. The model a k e s  into account the unusually low-lying phonon 
branches in some of the BCC metals and yields. where phonon frequencies shift with 
temperature, temperaturedependent values of H,". 

1. Introduction 

Compared to those of the FCC metals, self-diffusion coefficients D ( T )  in BCC metals 
are known for their anomalous behaviour. Comparing D ( T )  on a temperature scale 
normalized by the respective melting temperature Tm, the self-diffusion data in BCC 
metals (figure l(o)) scatter over a large range, whereas those of the FCC metals 
(figure l(b)) fall within a small band described by the activation energy Q and the 
prefactor Do: 

Q = 1.5 x 10-3T,(f10%) eV 

0.05 < D, < 5 x mz s-'. 

The variation of the  diffusivities in BCC metals exhibits some group systematics 
[l, 21. Group VI metals, where the BCC structure is the only stable phase and which 
have high melting temperatures, show the lowest diffusivities. Those of the group V 
metals, (V, Nb and lh) are slightly higher and similar to the ones of the FCC metals. 
The BCC metals with a limited existence range like the alkali metals (Li, K and Na) 
and even more pronounced the group IV metals (Ti, Zr and Hf) show much higher 
diffusivities in their BCC phase. 

The differences are strongest at low temperatures, whereas diffusivities 
extrapolated to the melting point approach a common value 

 IO-'^ D ( T , )  < 5 x IO-" m2 s-'. 
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Figure 1. (0 )  Self-dillusivities D of  cc metals on a normalized temperature scale. ( b )  
For comparison, the self-diffusivily D of FCC metals on a similar rale. For a compilation 
of D ( T )  see [ZS]. 

The most pronounced curvatures in the Arrhenius plot of D ( T )  are observed 
for the BCC metals with the highest diffusivities. Deviations from a linear behaviour 
are also reported for the more ‘normal’ metals ll, Nb, V, W and MO [3]. Only the 
diffusivity of Cr, which is the lowest of all BCC metals, can be described well by a 
single activation energy over a temperature range 1 < T,/T < 2 141. 

It is commonly accepted that self-diffusion in FCC metals is dominated by the 
most simple mechanism, namely i(110) diffusion jumps into nearest-neighbour (NN) 
vacancies (51. Whether the self-diffusivities in all BCC metals can be understood 
in a similar simple picture, namely in terms of diffusion via i(111) NN vacancy 
jumps, is less evident. Such a model has to explain why the diffusion entropies 
and enthalpies vary over a large range for the different elements of a common 
structure. Furthermore, in order to explain the curved Arrhenius plots, it has to 
introduce temperature dependences of these quantities. In the model proposed by 
Henig [2, 61 and Petry [7, 81 this is qualifafively achieved by pointing out the striking 
correlation between phonon and diffusion anomalies in BCC metals. It is argued 
that the extraordinary low phonon frequencies found in BCC elements probe the 
migration potential for the diffusion jump into NN vacancies and thus are experimental 
evidence for low migration barriers. The different degree of softening observed in the 
different elements then accounts for the large scatter in the heights of the migration 
barrier. Newly available temperature-dependent phonon measurements in the BCC 
phase of the group IV metals [9-111 show the predicted pronounced frequency shift 
of these low-frequency phonons with temperature. This experimental proof of the 
strong anharmonicity in these metals is the crucial prerequisite to define temperature- 
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dependent entropies and enthalpies. 
Direct experimental evidence for the dominance of the NN vacancy jump 

mechanism for the self-diffusion in BCC metals was found in recent quasi-elastic 
neutron scattering experiments on Na [12, 131 and @-Ti [14]. Emphasis is put on the 
case of @-Ti, which shows the most striking diffusion anomalies and was thought to 
be an ideal candidate for alternative diffusion mechanisms. 

It is the purpose of this paper to calculate the migration enthalpy H," for an 
NN vacancy jump direct& from the measured phonon dispersion without adjustable 
parameters. Comparison with experimentally known values of H," will show the 
validity of such a model of phonon-controlled diffusion. Reliable predictions can be 
made for cases where H," is not accessible experimentally, e.g. in metals where the 
BCC structure is stable only at high temperatures. 

The paper is organized as follows. In section 2 the formalism to calculate H," 
by means of the phonon density of states is presented. In section 3 calculations of 
H," for FCC metals are compared with the experimentally known values. Encouraged 
by the success of our model in the case of the FCC metals, H," is calculated in 
section 4 for BCC metals, where the experimental situation is less clear. In section 5 
the temperature dependence of H,"(T)  is calculated for BCC metals, where phonon 
dispersions are known in the temperature range relevant to diffusion. Finally in 
section 6 it is shown that in the two extreme cases-namely fast diffusion and strongly 
curved Arrhenius plot in &Zr, and slow diffusion and straight Arrhenius plot in Cr- 
D ( T )  can be explained by the same mechanism, diffusion via NN vacancies. 

2. The model 

2.1. General 
For a monovacancy jump in cubic lattices, the self-diffusion constant D ( T )  can be 
expressed by 

with a the lattice parameter, f the correlation factor (fFcc = 0.782, fscc = 0.727), 
tuv( T) the migration jump probability 

and c,(T) the probability of finding a vacancy on a given lattice site, i.e. the vacancy 
concentration 

According to the theory of Vineyard [15], the entropies can be expressed by the 
eigenfrequencies for the equilibrium configuration wz (a = 1 , .  . . , 3 N )  and those of 
the defect configuration. The latter are the eigenfrequencies of either the saddle- 
point configuration w; (a = 1 , .  . . , 3 N  - 1) or of a lattice containing a vacancy 

In the high-temperature limit, the migration and the formation entropies are given 

D ( T )  = Q Z f % ( T ) c , ( T )  (1) 

= %exP(S,"/kB) exP(-ff,"/bT) (2) 

(3) G( T )  = exp( s,! / k,) exp( - H,' / k , ~ ) .  

U; (a = 1 , .  . . , 3 N ) .  

bv 
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In equation (4) the attempt frequency U, has been formal& attributed to the 3Nth 
eigenfrequency of the equilibrium crystal. Electronic contributions to the entropies 
are neglected in equations (4) and (5). (As has been argued by Hatcher et al [16], 
electronic contributions to the formation entropy are proportional to the electronic 
density a t  the Fermi energy n( EF). The electronic contribution to the formation 
entropy is therefore proportional to the change of the density of states at EF. These 
contributions are negligible for FCC metals because n(EF) is usually very small in 
FCC metals. Considerably larger values can be expected for BCC transition metals with 
a large density of states a t  the Fermi level.) 

2.2. The migration enthalpy H," 

The activation energy E, z H," in equation (2) is the internal energy needed to 
move the jumping atom adiabatically from its initial to its final position. This energy 
consists of two parts, the change in potential energy and the change in vibrational 
energy. For heavy atoms, to which our calculation is restricted, the potential energy 
term is the dominant one and the latter term, which is of the order of 0.01 eV, can 
be omitted. 

We assume a smooth energy curve E ( z )  in the reactive coordinate z. For any 
given shape the curvature in the minimum will be related to the barrier height. 

For a sine shape one has, for example, 

H R Schober et al 

E ( z )  = ; E , [ l - c O S ( n ~ / d ) ]  (6) 

E ( z )  = ;E,  [ l -  1 + + ( 7 r / d ) 2 Z 2 ]  = 4 E a ( 7 r 2 / 2 d 2 ) 2 .  

where E, is the barrier height and d the distance to the saddle point. For small 
deviations from the equilibrium positions at 3: = 0, equation (6) can be expanded to 

(7) 

The latter equation can be expressed by harmonic lattice theory (e.g. [17]) in terms 
of the static lattice Green function matrix C of the jumping atom. If one exerts a 
force F on an atom m, the displacement of this atom is given by 

sm = Gm"Fm.  (8)  

(9) E d  = 5 

All the other atoms will relax in order to minimize the elastic energy to a value of 
1 F m  C m m p z  

Inverting equation (8) to Fm = (G")-lsm the energy can be expressed in terms 
of the displacement 

Eet = i ' P ( C " ) - P .  (10) 

E, = (2/7rz)e(C")-'edz. (11) 

Setting sm = ,em (zz = sm . sm) and comparing (7) with (10) one gets 

In deriving this equation, it has been assumed that the curvature of the effective 
potential is the same in the equilibrium position and in the saddle point. In general, 
one expects an improvement by averaging the two curvatures, i.e. replacing C-' by 
the average 

G-' = ; (G$ - G,:,,,) . (12) 
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Here Cequ refers to a relaxed lattice around the vacancy and the jumping atom at its 
equilibrium position, and GWddle refers to a lattice with the atom on the saddle point. 
Simulations with computer models based on various interaction potentials showed 
that equation (11) together with (12) reproduces the exact value of E, within a few 
per cent [NI. 

The Green function C for both the equilibrium and saddle-point configurations 
can be expressed in terms of the eigenvalues w" and eigenvectors en of the dynamic 
matrix of the respective configuration: 

Each mode U contributes to the Green function with the squared component of the 
amplitude of atom m and the Green function is inversely proportional to its square 
frequency. The activation energy is therefore strongly influenced by low-frequency 
modes. This is particularly evident in situations where the diffusing atom vibrates 
with low-frequency resonant modes. A long-known example for such a situation is 
the self-interstitial atom in FCC metals, where both low-frequency resonant vibrations 
and low activation energies have been observed [19, 201. 

Unfortunately the Green functions needed to evaluate equations (11) and (12) are 
not accessible experimentally. We have therefore to resort to correlating them with 
their ideal crystal counterpart. For a given structure, FCC or BCC, the configurations 
of the vacancy and for the saddle point will be similar, whereas the vibrational spectra 
will differ from material to material. It is therefore a plausible assumption to absorb 
the structural effects in a common factor. This approximation has been checked by 
computer simulations with various pair potentials, and for both FCC and BCC a value 
of about 1.8 has been found. 

In the ideal cubic lattice the Green function G" is diagonal and reduces to one 
number proportional to the w-' moment of the spectrum. It  is convenient to 
express the distance d in units of the lattice vector a as d = d,a and thus 

E, = [ 2 / ( 1 . 8 ~ * ) ]  (Gu)-'diaz = a(Gu)-'aZ (14) 
where in the latter expression the various geometrical factors have been combined to 
aFCc = 0.0135(7) and agCC = 0.0130(7). It should be noted that in the FCC lattice 
d, = i d i s  given by the symmetry. In the BCC lattice the corresponding value would 
be dy = $A. In the simulations we find a value of about d, = a, i.e. a kind of 
double-hump potential with relaxed positions of the barriers. The uncertainty in d, 
and in the factor 1.8 seem to correlate somewhat such that the combined uncertainty 
in a is reduced to about f5%. 

In the high-temperature approximation the mean-square displacement can be 
expressed as 

which explains the observed correlation between large Debye-Waller factors or small 
Debye temperatures Bo and high diffusivities [21]. 

For practical purposes G" will be calculated directly from the phonon density 
of states Z(W),  which is known from Born-von Karman (BVK) fits to the measured 
phonon dispersions. So, instead of equation (13), the equation 

(U:) = kBTGu = 3 h Z / k B 0 6 M  (15) 
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is used. 
In the long-wavelength limit the phonon frequencies can be expressed as w j  ( q )  = 

c j (Q)q ,  where c j ( Q )  is the sound velocity for polarization j and direction Q = q/q .  
If one approximates equation (16) by this long-wavelength behaviour one gets 

H R Schober et a1 

where p is the mass density, V, the volume of the primitive unit cell and ( ) denotes 
the average over all directions Q. These averages cannot be evaluated exactly for cubic 
lattices. In the isotropic case one would obtain an average of l / c t + 2 / 4 ,  with cL and 

the longitudinal and transverse sound velocities, respectively. If for the anisotropic 
case one makes a crude approximation cL = (Cl,/p)l/z, cT2 = ( C U / p ) l / '  and 
9, = [( C,, - CIz)/2p]'/* corresponding to the sound velocities in the (1101 direction 
expressed in terms of the elastic constants C,j, one obtains an expression similar to 
the one used by Flynn (see below), except for the different weight of the longitudinal 
branch. Since C,, > f (  C,, - C,,), this different factor is numerically of no great 
consequence. 

The migration enthalpy derived by Flynn [22] for the continuum limit reads 

H," = C o b 2  (18) 
with 

15 3 2 1 t -. _ -  
2 c  - c, c,, - c,, c,, 

~~ .. ~~ 

Cl is the atomic volume and 6 = q / s  is a dimensionless constant that reflects the 
ratio of a hypothetical cut& distance q of the harmonic potential towards the saddle 
point and the saddle-point distance s. The obvious drawback of the expressions (18) 
and (19) is that they limit the consideration of phonons to elastic constants. Low- 
energy phonons at the Brillouin zone (BZ) boundary, which are of crucial importance 
for the group 111 and IV metals [23], are taken into account only in a very indirect 
way by an effective lowering of C. Furthermore, equation (18) is not parameter free, 
no explicit values are given for the constant 6, and in practice this constant is found 
by adjusting equation (18) to some well known values of H,". 

2.3. The formation entropy S,' 

According to equation (5) the formation entropy S,' can be seen as the difference 
of the vibrational entropies of (i) a lattice with one vacancy and an additional atom 
on the surface and (ii) the perfect lattice, S,! = S,,,(perfect) - S,,,(def) (see also 
[16]). In general Si > 0 since a softening of the lattice is expected when an empty 
lattice site is introduced. This is clear from the argument that cutting of a bond that 
connects an atom to its neighbour leads to a reduction of the vibration frequency of 
the atom. The eigenmode frequencies we are calculated from the force constantS 4ij 
known from BVK fits to the measured phonon dispersions. The enthalpy of the defect 
crystal has been calculated by taking one atom out of a model crystal of 432 atoms 
with periodic boundary conditions. The vacancy is then mimicked by the missing 
force constants from the empty lattice sites to all sites. No relaxation of the atoms 
around the vacancy have been taken into account. Rsts with a relaxed crystal showed 
only a small decrease of S,' of the order of 10%. The method has been developed 
earlier [16, 24, 251 and, for instance, proved to be successful for calculations of a-Fe 
where 5': = 2,lk,/atom has been found. 
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2.4. The migration entropy S," and formation enthalpy H: 

An equivalent simulation can be used to compute the migration entropy S,!". In this 
case an NN atom of our model crystal with a vacancy is put at the saddle-point position. 
In order to calculate the eigenmodes of an atom a t  the saddle-point position, the 
Curvature of the potential at the saddle point has to be known precisely. Simulations 
with different pair potentials showed an explicit dependence of S," from the chosen 
potential. So, the concept of a separation of structure-specific and element-specific 
contributions to S,!" failed, and no direct calculation of S,!" can be presented. 

The formation enthalpy H,' in metals is dominated by electronic effects. Since 
we confine ourselves here to the contributions of the phonons to the diffusivity, no 
calculations 0f.H: will be presented. 
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3. H," in FCC metals 

'Ihble 1 shows calculations of H," by means of equation (14) for the best- 
investigated FCC metals. All phonon dispersions used to calculate the lattice Green 
function G" refer to room-temperature (RT) measurements and are reviewed in (261. 
Correspondingly, lattice parameters that enter in equation (14) refer also to RT. 

Table 1. Aclivalion enthalpies for F a  melds (ev). 

H : ( e ~ p ) ~  H," H:(FI) H:(exp) a Q(exp) 

Ag O.hh(0.05) O.hfA.73 0.63 l.ll(O.05) 1.76 
AI 0.61(0.03) O.hO 0.6h O.h7(0.03) 1.25-1.31 
Au 0.71(0.05) 0.74 0.64 0.93(0.04) 1.73 
Cu 0.70(0.02) 0.67 0.65 I.zS(0.05) 2.05 
Ni 1.04(0.04) 0.98 1.11 1.79(0.05) 2.88 
Pb 0.43(0.02) 0.34-0.37 0.37 0.58(0.W) 1.05-1.10 
Pl 1.43(0.05) 1.26 1.41 1.35(0.05) 2.69 

a Recommended uperimenlal migration enthalpy H,"(ap) and vacanq formation 
enthalpy H,'(exp) [27]. 

e Calculated HT(F1) according lo Flynn's formula (equation (18)) wilh 62 = 0.081. 

corresponding 10 lhe lw-tempemure diffusivities have been taken from [28]. 

Calculated H," according to equation (14). 

Activation energy far self-diiiusion; for curved Arrhenius plou the activation energies 

The experimental values H,!"(exp), with which our calculations have to be 
compared, stem from a recent review of Ehrhan [27]. Most of these values have 
been determined from resistivity annealing measurements around stage 111 after low- 
temperature irradiation. Therefore, these values are valid for temperatures around 
stage 111. It is emphasized that this determination of a,!" is independent of self- 
diffusion measurements; in particular H,!" has not been chosen in order to comply 
with the relation H m  + H' = Q. 

The comparison of H," with H,"(exp) shows excellent agreement within one 
standard deviation o of the recommended experimental values. Exceptions are Pb 
and Pt, where the differences between recommended and calculated values are of the 
order of 3a. 

A similar good agreement is achieved when Hr(exp) is compared to calculations 
of Hr(Fl )  according to Flynn's formula (equation (18)). As mentioned earlier, 
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equation (18) is not a parameter-free calculation of H," and the constant h2 = 0.081 
has been determined such that the mean-square deviation between H,?(exp) and 
H,?(Fl) becomes minimum (a method applied earlier, see [19]). Because Flynn's 
formula relies on harmonic considerations, the elastic constants and the atomic 
volume have been taken at liquid-helium temperatures. For a recent compilation 
of elastic constants measured by ultrasound methods, we refer to [29]. According to 
Flynn [22] the reason for this excellent description of H," is that the atoms overcome 
the diffusion barrier by kinelic energy fluctuations achieved a t  small displacements, 
i.e. near the equilibrium where the kinetic energy is the largest and the harmonic 
approximation is valid. 

It is instructive to check to  what extent H,? satisfies the relation Hm + H' = 
Q. Again, the experimental values of H! have been taken from [27] and are 
recommended averages from experiments that measure the vacancy concentration, 
Le. quenched-in resistivity, positron lifetime and Simmons-Balluffi type experiments. 
The activation energies for self-diffusion Q stem from diffusivity measurements 
compiled in [28]. In cases where remarkable curvatures in the slope of the Arrhenius 
presentation of D ( T )  have been reported, the compiled values of Q refer to 'low'. 
temperature data of D ( T ) .  With the exception of Pb the relation If," + H,' = Q is 
obeyed well, thereby again giving evidence that self-diffusion in FCC metals is largely 
dominated by single vacancies. 

H R Schober et a1 

4. H: in BCC metals 

Most of the BCc metals transform from a high-temperature BCC structure to a close- 
packed structure a t  low temperature or at elevated pressure. These martensitic 
transitions and the extreme sensitivity of BCC metals to impurities make experimental 
access to the migration and formation enthalpies of vacancies a difficult task. As 
a consequence, reliable values for H,?(exp) and H,'(exp) are only available for the 
group V and VI metals, where BCC is the only stable structure, and for the alkalis 
Li, Na and K. For BCC metals these values are compiled in a recent review by 
Schultz [30] and the recommended values are given in table 2. As for the FCC metals 
H,?(exp) is determined mainly by stage 111 resistivity annealing after low-temperature 
irradiation, whereas H,'(exp) stems from measurements of the vacancy concentration 
q(T) via quenched-in resistivity, positron lifetime analysis or Simmons-Balluffi type 
experiments. 

Reliable phonon dispersion measurements are available for a large number of 
BCC structures (see for instance [26]). Extensive phonon measurements have been 
published recently for the high-temperature BCC phase of the group IV metals Ti, 
Zr and Hf [9-111. These are of particular interest because diffusion anomalies are 
most pronounced in these elements. 'Ihble 2 lists our calculation of H," on the basis 
of these measured phonon dispersions. The crucial point is the correct evaluation of 
the static Green function G" by means of BVK fits to the dispersion. In cases where 
these BVK parameters were not available in the literature or were doubtful, the BVK 
fits have been repeated. 

Let us first discuss those cases where the calculations of H," can be compared 
directly with experimental values. In view of the considerable experimental 
uncertainties and the fact that equation (14) does not incorporate any parameter 
adjusted to data of diffusion experiments, the agreement between calculations and 
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experiment is excellent for the group V and VI metals and for a-Fe. Keeping in 
mind that we want to introduce temperaturedependent quantities, it is emphasized 
that both the experimental and the calculated migration enthalpies refer roughly to 
the same temperature range. The phonon dispersions were measured at RT and the 
resistivity stage 111 varies between 170 and 900 K for the group V and VI metals and 
a-Fe [30]. A comparison of the phonon dispersion in the alloy 'h,-=W= [38] and 
pure Th [41] indicates that the transverse T,[((O] branch in the alloyed system but 
extrapolated to I = 0 has considerably lower frequencies than determined directly 
in pure ?a. Therefore, the phonon measurements on pure la have been discarded 
and @ has been extrapolated from the 'Ih-=W= system to z = 0. The alkali metals 
Li, Na and K exhibit an unusually low experimental migration enthalpy H,"(exp). 
Whereas our calculation reproduces this tendency qualitatively, the actual values of 
H," are a factor of 2 too large. We shall come back to this point below. 

The considerable advantage of equation (14) is to make predictions where H," 
cannot be determined experimentally, as for instance in the group I11 and IV metals, 
where the BCC phase exists only at elevated temperatures. 'hble 2 shows predictions 
for all BCC structures where phonon dispersions are known (without lanthanides and 
actinides). Pronounced group systematics are discernible (figure 2(a)). Group I 
metals show the lowest migration barrier, definitely below 0.1 eV; These barriers 
increase continuously when filling the s band and consecutively the d band up to four 
d electrons in group VI metals. Emphasis is put on the group 111 and IV transition 
metals, where especially low values of H," are found far away from any rule of thumb 
predicting H," only slightly smaller than H:. 

We finish this comparison by compiling H,"(FI) calculated in the elastic continuum 
approach according to equation (18). As for the FCC metals the elastic constants and 
the atomic volume have been taken at liquid-helium temperature whenever possible. 
In cases where the BCC phase is only stable at elevated temperatures, values close 
to the transition temperature have been chosen. When ultrasound elastic constans 
were available, the figures stem from [29]. In all other cases the elastic constants 
have been determined from phonon measurements. In view of the uncertainty 
of the experimental values of H,"(exp), a different procedure than in the case of 
the FCC metals has been adopted to adjust the parameter 6'. Because W is a 
typical representative of what we call normal self-diffusivity, 6' = 0.041 has been 
adjusted in order to reproduce H,"(W) = 1.7 eV. In general H,"(FI) coincides with 
our calculations of H,", and in cases where H,"(exp) is known it reproduces the 
experimental values. 

Because equation (18) represents a longwavelength limit, we would have expected 
that Flynn's formula fails in those BCC metals where particularly low frequencies at 
large q are found [SI. However, it happens that in BCC metals the valley of transverse 
low-energy phonons that spans from the W to the N point is always connected with 
a low slope of the T,[E(O] phonon branch [U]. The square of this slope determines 
C' = $(Cl, - C,,), which (owing to its small value) is the dominant elastic constant 
in equation (19). It is due to this connection of the short-wavelength phonons with 
C' that Flynn's formula holds also for metals with dominant low-frequency phonons 
at large q. 

Whereas our calculations systematically overestimate H," for the three alkali 
metals Li, Na and K, the  calculations by means of Flynn's formula reproduce the 
measured migration enthalpy exactly. One way to explain this could be a discrepancy 
in the value of the elastic constants as determined by ultrasonic measurements or by 



9330 H R Schober et a1 

measuring the phonon dispersion at small q. Indeed free BVK fits to Li systematically 
yield a C' 25% larger than measured by ultrasonics. We then forced the BVK fit to  
the Ci, values determined by the ultrasonic measurements (421, resulting in a still 
perfect reproduction of the measured phonons 143). However, H: only decreased by 
10% with respect to the Values given in table 2. We have to conclude that for the 
alkali metals the present ansae overestimates the role of phonons at large q. 

The same trend was observed in computer calculations of the activation enthalpies 
of Li and Na [44]. The reason for this discrepancy is probably inherent in the low 
values of the migration enthalpy itself. The Vineyard expression for the diffusion 
constant (1) asumes that the migration enthalpy is large compared with the typical 
phonon energies, H' >> k&. This condition is violated in the alkali metals, and 
the diffusion constant is no longer given by a product of a quasi-static activation term 
times an entropy factor. 

For selected cases table 2 also lists the formation entropy St calculated according 
to the procedure described in section 2.3. As in the case of H,", it is important to 
note that S: has been calculated by means of force constants & j  relating to phonons 
measured at a given temperature. Sl will be discussed in more detail later on; here 
we confine ourselves to the statement that St is of the order of magnitude generally 
expected for the formation entropy. 

5. Temperature-dependent H ; ( T )  

Our approach to calculate H," and S: has the advantage of relying on realistic 
interactions a t  a givcn temperature. Anharmonicities of the lattice potentials, which 
manifest themselves as shifts of the phonon frequencies with temperature, are taken 
into account in a quasi-harmonic approach. Calculating H," or S: by means of 
phonon dispersions measured a t  different temperatures automatically introduces the 
temperature dependence of these quantities. 

Confining ourselves to BCC metals, one is confronted with the problem that 
only for a few cases has the whole phonon dispersion been measured at different 
temperatures. Furthermore all these examples refer to temperatures below the 
temperature where diffusion constants D(T) can be measured! That is why we 
started a series of experiments measuring phonon dispersions for the first time in 
a temperature range relevant for tracer diffusion coefficients. For that purpose we 
selected the two extreme cases P-Zr and Cr; the temperature-dependent dispersion of 
p-Zr has been published recently [lo] and those of Cr are the topic of a forthcoming 
paper [45]. 

'Ihble 3 compiles the values of H,? and S: calculated from the available phonon 
dispersion for p-Zr and Cr at different temperatures. For completeness, calculations 
for Nb and MO, where phonons are known over a large temperature range, are added. 

For p-Zr the transverse low-energy phonons along T,[F{2<] and T,[C{O] are 
partly overdamped. Consequently they have been described by a damped oscillator 
equation, yielding a large phonon width or a short phonon lifetime and a phonon 
energy that is higher than the energy where the highest count rate is observed [lo]. 
Similar to temperaturedependent energy shifts, this very short lifetime of the phonon 
(in the order of vibrational periods) is a signature of strong anharmonicity. Tkking the 
phonon energy from a damped oscillator description of the phonon groups in order 
to calculate Z(W)  and consecutively G", this part of the anharmonicity is neglected. 
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Lacking a proper way to take the damping into account in Z(w),  we adopted an 
alternative approach the damped phonons were described by broadened Gaussians, 
yielding phonon energies that correspond to the energy of highest count rate in the 
phonon groups [46]. The phonon energies thus determined are of even lower energy 
than that from the damped oscillator description. Owing to the dominance of the 
low-energy phonons in the determination of G", this alternative procedure leads to 
lower migration enthalpies H,". The results of both procedures are listed for the 
case of p-Zr in table 3. For all other metals of table 3, phonons are not particularly 
damped and both descriptions of the phonons lead to identical phonon energies and 
therefore identical values of H,". 

H R Schober et a1 

Tabk 3. Varialion of H," and St with temperature directly calculated Imm the phonon 
dispersion at the respeclive temperature. 

B E  Z f  1188 
1483 
1883 

N bd 298 
700 
900 

1030 

Cf 298 
673 

1073 
1473 
1773 

MO' 10 
298 

1203 

0.2848 (0.2.57)b 
0.324 (0.308) 
0.374 (0.337) 

0.54 
0.59 
0.63 
0.64 

0.88 
0.85 
0.77 
0.69 
0.59 

1.26 
1.22 
1.09 

2.76' (3.32)' 
2.58 (2.84) 
2.38 (2.66) 

1.8 
1.8 
1.8 
1.8 
1.9 

1.8 
1.8 
1.8 

Based an a description o l  the lowenergy phonons by a damped oscillator. 
By a Gaussian lineshape. 

Sources: References for the phonon dispersions are: [IO. 461, [47], ' [45], ' [48]. 

Figure 2(b) gives an impression of the temperature dependence of H,"(T) for p- 
Zr  and Cr. In both cases H,?(T) can be interpolated by a curved polynomial. Bking 
into account the uncertainties in determining H,", this curvature is not conclusive; a 
linear extrapolation is also compatible with the data. What is of particular importance 
here is the opposite temperature dependences of H,!"(T) in these metals. Because 
phonons stiffen with increasing temperature in @Zr, H," increases; and because in 
Cr the opposite happens, there H,"(T)  decreases with increasing temperature. 

6. Comparison with tracer dilhsivities 

The unknown attempt frequency v = vuexp( S,?/kB) and the experimentally less Well 
known If: d o  not allow a direct calculation of D ( T ) .  However, using the values of 
table 3, v and H: can be estimated by a fit of equation (1) to the known tracer 
diffusivities. 
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1 6 "  
1.0 1.2 14 1.6 16 

Tm/T 

Figure 3. D(T) for BCC Zr: data points from [49j: Figure 4. D ( T )  for Cr: data points from [4]; 
Cull curve and broken line, reproduction of D ( T )  full line, repmductian o f  D ( T )  by means of 
based on either a Gaussian or a damped OSciIIalor temperature-dependent migration and formation 
description of the phonons in @-U (for delails, s ee  enthalpies (for details, see text). 
text). 

approximation of Korringa, Kohn and Rostoker (KKR method) indicate an upper 
limit for H,! = 2.7 eV in Cr [52] in agreement with our estimation a t  fT, .  

6.3. Limitations 

The above estimates of U and H,! yield values of the expected order of magnitude. 
They should by no means be understood as quantitative. For instance, equation (4) 
and our knowledge of the strong anharmonicity of the phonons in p-Zr as well as in 
Cr strongly suggest a temperaturedependent migration entropy Sf( T) and thereby 
an attempt frequency changing with temperature. The observed shifts of the phonon 
frequencies with temperature reveal that the effective potential in which the atoms 
vibrate changes with temperature. It is therefore plausible that the formation enthalpy 
H,! needed to form vacancies also changes with temperature. 

This conclusion, that all quantities determining D ( T )  depend explicitly on 
temperature, is further supported by thermodynamic considerations. It is well known 
that 

(aH/aT)I, = T(aS/aT)I, (20) 

holds with H and S the activation enthalpy and the entropy of the diffusion process. 
Making use of equations (1) and (20), it can easily be shown that the slope of the 
diffusivity in the Arrhenius plot 

a l n D ( T ) / a ( l / k B T )  = H ( T )  Q ( T )  (21) 

gives a t  any point the temperature-dependent activation energy Q ( T )  of the diffusion 
process [54]. 

Assuming that the formation and migration of the vacancy are independent 
thermodynamic quantities-the implicit assumption of the validity of equation (1)- 
H (  Tj  decomposes into 

H ( T )  = H,(T)  + H : ( T  (22) 
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and equation (20) is also valid separately for H i  and Si with the indices i = m,f. 
The temperature dependence of H:(T) then determines the temperature variation 
of the migration entropy DS,?(T), and an S,(T) decreasing with temperature as 
found for O-Zr necessarily needs a decreasing H,'(T). It is evident that, if H;(T)  
and S,!(T) change with temperature as shown in table 3, the quantities Ht(T)  and 
S y ( T )  do so, too. 

Contradictions of our calculations in section 5 to these general thermodynamic 
considerations have to be mentioned. H,"(T)  increases for the case of 0-Zr with 
increasing temperature. lbgether with the measured change in Q(T) from.'l.lO eV 
a t  1188 K to 1.67 eV at 1883 K, this leads according to equation (22) to a H f ( T )  
increasing with temperature. If equation (20) is also valid for the formation process 
alone, then aSf/aT has to be positive, whereas our microscopic calculations of 
S,'(T) show the opposite trend. One should note, however, that at T = 1883 K 
exp[-H:(T)/kBq 0, and, therefore, the condition of well separated single atom 
jumps with full thermalization in between is no longer fulfilled. This was also observed 
in a computer simulation by Willaime and Massobrio [55] (see below). 

7. Other approaches to calculate H ;  

Using a Chang-Graham potential and both the Green function and energy 
minimization methods, Hatcher et al [16] calculated the  diffusion properties of a-Fe. 
A formation enthalpy S,! = 2.1kB and an attempt frequency Y = 3.4 x l O I 3  Hz are 
found, whereby S: is in astonishingly good agreement with our calculations. Diffusion 
is by hopping over a double-hump potential with the first hump at a relaxed position 
of 0.338a instead of id%. 

Using a Finnis-Sinclair interatomic potential for a-Fe, Marchese er a1 [56] also 
find a relaxed double-hump potential for the migrating defect with a small minimum 
between the double humps of only 0.02 eV With such a potential they got values of 
H," = 0.92 eV and H i  = 2.26 eV 

Using a Dagen's type of pair potential, static calculations by Schober et a1 [44] 
yield H," = 0.11 eV in Li. Dynamical simulations with the same potential by Da 
Fano and Jacucci [57] for Na and K give migration enthalpies in the range of 0.09- 
0.18 e\! Compared with the experimental values [58] and the present calculation, all 
these figures in the alkali metals are definitely too high. 

Detailed simulations of diffusion properties for the case of p-Zr have been 
performed by Willaime and Massobno [49]. By means of quenched molecular 
dynamics, the diffusion trajectory of a migrating atom is followed; 99% of all atomic 
jumps turned out to be NN jumps. At 0 K and the lattice fully relaxed, values of 
H," = 0.32 eV, H,' = 1.53 eV and .$ = O.5kB are found. Increasing the temperature, 
the effective migration barrier decreases and H," = 0.284 and U = 7.1 x 1OI2 Hz 
are found. In contrast to the simulations in a-Fe the migration barrier relaxes to a 
single peak in the dynamic case as well as in the static case (0 K). Relevant for the 
diffusion anomalies in BCC metals is a further observation made in the course of these 
molecular dynamic simulations. At - 1600OC the time interval between two successive 
jumps of the vacancy is approximately equal to the duration of an atomic jump from 
one site to the nearest-neighbour site. This means that when an atom finishes its jump 
into the vacancy the next diffusing atom has already started to jump. In this context 
it might be necessary to reconsider the assumption of neglecting the migration events 
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in order to calculate the vacancy concentration, i.e. the formation and migration can 
no longer he considered as thermodynamically independent processes. This might 
be one of the reasons why the thermodynamic considerations partly contradict the 
calculated temperature dependence of S,' in the case of p-Zr. 

Temperature-dependent activation enthalpies H ( T )  and S ( T )  have also been 
proposed by Gilder and Lazarus [59] and in a more explicit way by Varotsos and 
Alexopoulos [54]. The bulk quantities to probe the lattice anharmonicities are 
the thermal expansion coefficients and the bulk modulus B = (Cll + 2Cl,)/3. 
Complementany to our approach, these studies concentrate on the temperature 
dependence of the activation process and the vacancy formation process. Microscopic 
details, as for instance the low restoring forces for the motion of the [ l l l ]  chains in 
most BCC metals, do not enter directly in these considerations-thermal expansion 
and the hulk modulus are isotropic quantities in cubic metals. Whereas these models 
explain the observed curvature in the Arrhenius plot of D ( T )  in BCC metals mainly 
hy the anomalous decreases of the bulk modulus at hilh temperature, the present 
model explains 'unusually' high or low diffusivities at low temperature in accordance 
with the experimental observations [l,  21. 

H R Schober et a1 

8. Summary 

A model based on the static Green function has been presented to calculate the 
migration enthalpy H," for a nearest-neighbour vacancy jump mechanism. The 
excellent agreement of the calculated values of H," with the best-known experimental 
cases, namely H,!" measured in FCC metals, shows the reliability of the method. 
Calculations for BCC structures, where the experimental values are less well known, 
allow predictions for all BCC metals where the phonon dispersions have been 
measured. The particularity of the opcn BCC structure-namely low restoring forces 
for the transverse motion of [ l l l ]  chains and of the (110) planes against each other 
[23]-is implicitly taken into account. This leads to pronounced chemical group 
systematics in the computed H," with especially low H," for all the BCC elements 
with martensitic transformations to close-packed structures. 

In quasi-harmonic approximations and by means of the measured shifts in the 
phonon dispersion, the temperature dependence of H,!" is introduced. In p-Zr, 
where D ( T )  is relatively high at low temperatures, the migration barrier indeed 
decreases when the transition temperature is approached from above. In Cr, where 
the diffusivity is particularly low at low temperatures, an increase of the migration 
barrier towards low temperatures is calculated. 

Whereas mainly arguments for a temperature-dependent H," have been 
presented, the observed pronounced anharmonicity in the lattice vibrations in such 
different cases as p-Zr and Cr makes it likely that the vacancy formation H,! also 
depends on temperature [54]. For p-Zr and C r , D ( T )  has been reproduced with a 
set of temperature-dependent values of H," and H,! in the framework of a single 
vacancy mechanism. 

In summary, we emphasize that the above calculations support the model of 
phonon-controlled self-diffusion in BCC metals [2, 81, where the term 'controlled' 
should be understood in the sense that the dynamic response of the lattice tells us 
about particularly low and temperaturc-dependent migration barriers. 

The present calculations of )I," strongly support the model of the dominant 
role of monovacancy diffusion in the low- as well as in the high-temperature region 
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of BCC metals, but do not prove it. Experiments that measure the diffusion 
mechanism directly like incoherent quasielastic neutron scattering (QNS) are much 
more conclusive. Such measurements have been performed close to the melting 
point in Na [I& 131 and Ti [14], and clearly reveal the dominant role of NN vacancy 
jumps and allow a t  most - 15% of next NN vacancy jumps, possibly via divacancies. 
Significant interstitial contributions could not be detected. Such a mechanism is 
still under consideration to explain D( 7') in Cr near the melting point [3]. A QNS 
experiment in Cr should be able to clarify the situation. 
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